ASYMMETRIC DIELS - ALDER REACTIONS WITH α -CHLORONITROSO COMPOUNDS - II. THE USE OF A CARBOHYDRATE DERIVED α -CHLORO- α -NITROSO ETHER

- a) Organisch-chemisches Institut der Technischen Universität München Lichtenbergstraße 4, D-8046 Garching
- b) Organisch-chemisches Institut der Universität Zürich Winterthurer Straße 190, CH-8057 Zürich

Abstract: The Diels-Alder reaction of 1,3-cyclohexadiene with the α -chloro- α -nitroso ether $\underline{2}$, prepared from mannose via the lactone oxime $\underline{1}$, gives the adduct $\underline{3}$ with 1-(S),4-(R) configuration in 69 % chemical yield and \geqslant 95 % enantiomeric excess.

The advantages of using α -chloronitroso compounds in stereoselective Diels-Alder reactions have been described in the previous publication $^{1)}$. There, we reported asymmetric induction with an α -chloronitroso compound derived from epiandrosterone. The use of optically active educts in the preparation of enantiomerically pure α -chloronitroso compounds is, of course, possible for many different classes of natural products. One of the least expensive classes in this respect are the carbohydrates. Moreover, they offer a wide range of structure variations and allow the evaluation of steric and (stereo)electronic effects.

Accordingly, we have synthesized a suitable reagent for performing asymmetric Diels-Alder reactions starting with 2,3:5,6-di-O-isopropylidene-D-mannofuranose²⁾, which was transformed into the known³⁾ mannonolactone oxime 1. By reaction with t BuOCl (CH₂Cl₂, -10°C, 1 h), 1 forms in a nearly quantitative yield diastereoselectively the α -chloro- α -nitroso ether 2, the first one to be described in this series as far as we know. The compound 2 was obtained in the form of blue crystals; it is stable at room temperature for several days⁴⁾. Its 13 C NMR spectrum shows a signal for the C-1 atom at δ = 126.2 ppm, a shift which indicates a hindered position of the nitroso group.

AnX-ray investigation of the compound $\underline{2}$ is on the way, at the moment we assume the configuration to be as shown, which seems to be plausible because the corresponding α -bromonitro derivative (- prepared in an analogous way from $\underline{1}$ and sodium hypobromite via the corresponding α -bromonitroso compound -) was shown by X-ray structural analysis to possess the same stereochemistry.

In this configuration of $\underline{2}$ the freedom of rotation of the nitroso group is severely limited. The rotamer A shown should have the lowest energy.

1,3-Cyclohexadiene reacts with the nitroso compound $\underline{2}$ even at -78°C within one hour to give the bicyclic oxazine derivative $\underline{3}^{1)}$ in 69 % yield. This compound is optically active ($[\alpha]_D^{20}$ +24.0° (c=5, CH_3OH)), its specific rotation as well as the NMR spectrum of its 10-camphor-sulfonyl derivative show that it is optically pure within the experimental accuracy. The sign of rotation is consistent with the 1-(S),4-(R) configuration - opposite to the one obtained by Diels-Alder reaction of cyclohexadiene with 17α -chloro- 17β -nitroso- 3β -hydroxy- 5α -androstane $\frac{1}{2}$. This is compatible with the steric model for the educt $\frac{1}{2}$, provided that the least hindered approach of the diene in the cycloaddition takes place as shown in picture B.

Acknowledgement: Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

- Asymmetric Diels-Alder Reactions with α-Chloronitroso Compounds. I.:
 M. Sabuni, G. Kresze, and H. Braun, Tetrahedron Lett. 1984, previous communication.
- 2) H. Ohle, and G. Berend, Ber. Deut. Chem. Ges. 58, 2591 (1925).
- 3 a) A. Vasella, Helv. Chim. Acta 60, 1273 (1977).
 - b) B. M. Aebischer, H. W. Hanssen, and A. T. Vasella, J. C. S. Perkin Trans. I 1982, 2139.
- 4) All new compounds described in this paper gave satisfactory elementary analysis and spectra.
- 5 a) B. Aebischer, A. Vasella, and H.-P. Weber, Helv. Chim. Acta 65, 621 (1982).
 - b) B. Aebischer, Thesis, Université de Fribourg (Suisse) 1983.

(Received in Germany 23 August 1984)